111 research outputs found

    Fire Spalling Prevention via Polypropylene Fibres: A Meso-and Macroscale Approach

    Get PDF
    A deep understanding of concrete at the mesoscale level is essential for a better comprehension of several concrete phenomena, such as creep, damage, and spalling. The latter one specifically corresponds to the separation of pieces of concrete from the surface of a structural element when it is exposed to high and rapidly rising temperatures; for this phenomenon a mesoscopic approach is fundamental since aggregates performance and their thermal properties play a crucial role. To reduce the risk of spalling of a concrete material under fire condition, the inclusion of a low dosage of polypropylene fibres in the mix design of concrete is largely recognized. PP fibres in fact evaporate above certain temperatures, thus increasing the porosity and reducing the internal pressure in the material by an increase of the voids connectivity in the cement paste. In this work, the contribution of polypropylene fibres on concrete behaviour, if subjected to elevated thermal ranges, has been numerically investigated thanks to a coupled hygrothermomechanical finite element formulation. Numerical analyses at the macro- and mesoscale levels have been performed

    A robust adaptive algebraic multigrid linear solver for structural mechanics

    Full text link
    The numerical simulation of structural mechanics applications via finite elements usually requires the solution of large-size and ill-conditioned linear systems, especially when accurate results are sought for derived variables interpolated with lower order functions, like stress or deformation fields. Such task represents the most time-consuming kernel in commercial simulators; thus, it is of significant interest the development of robust and efficient linear solvers for such applications. In this context, direct solvers, which are based on LU factorization techniques, are often used due to their robustness and easy setup; however, they can reach only superlinear complexity, in the best case, thus, have limited applicability depending on the problem size. On the other hand, iterative solvers based on algebraic multigrid (AMG) preconditioners can reach up to linear complexity for sufficiently regular problems but do not always converge and require more knowledge from the user for an efficient setup. In this work, we present an adaptive AMG method specifically designed to improve its usability and efficiency in the solution of structural problems. We show numerical results for several practical applications with millions of unknowns and compare our method with two state-of-the-art linear solvers proving its efficiency and robustness.Comment: 50 pages, 16 figures, submitted to CMAM

    The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance

    Get PDF
    The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide, raising serious concerns. A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between 11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing. Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7 December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive wastewater samples rising from 1.0% (1/104 samples) in the week 5-11 December, to 17.5% (25/143 samples) in the week 12-18, to 65.9% (89/135 samples) in the week 19-25, in line with the increase in cases of infection with the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in which the variant was detected increased from one in the first week, to 11 in the second, and to 17 in the last one. The presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples, and by Sanger sequencing in 66% (64/97) of PCR amplicons. In conclusion, we designed an RT-qPCR assay capable to detect the Omicron variant, which can be successfully used for the purpose of wastewater-based epidemiology. We also described the history of the introduction and diffusion of the Omicron variant in the Italian population and territory, confirming the effectiveness of sewage monitoring as a powerful surveillance tool

    Analisi sperimentali e numeriche del comportamento di interfaccia tra FRP e calcestruzzo

    Get PDF
    Lo scopo di questo lavoro è stato di sviluppare un programma ad elementi finiti tridimensionale, scritto in Fortran 90, in grado di rappresentare il comportamento di interfaccia di travi in calcestruzzo rinforzate da fogli di FRP, sia in fase elastica, che durante il fenomeno di delaminazione utilizzando la teoria del danno. Si è inoltre indagato sul comportamento del collegamento FRP-cls a causa di carichi a lunga durata, mediante una sperimentazione e attraverso simulazioni numeriche. Il modello FEM si basa sulla teoria del contatto [1] legata al danneggiamento per poter simulare tutto il processo di delaminazione partendo dall’innesco dovuto al superamento del limite di resistenza del collegamento, fino al distacco completo del rinforzo. La modellazione tridimensionale ha consentito ancora, di poter ottenere lo stato tensionale su tutta l’interfaccia, riuscendo quindi a rappresentare il comportamento “di bordo” bidimensionale delle tensioni di taglio riscontrato da numerosi autori in fase di sperimentazione[2],[3], nonché gli effetti di peeling. I test a lungo termine atti a caratterizzare i parametri viscosi dei materiali, sono stati effettuati attraverso prove a trazioni dei materiali costituenti le matrici polimeriche dell’FRP (resine epossidiche), e attraverso prove su travetti rinforzati da fogli di fibre in carbonio monodirezionali, soggetti a carichi concentrati. Numericamente i fenomeni differiti sono stati studiati implementando materiali di tipo elastoviscosi sia per il calcestruzzo, utilizzando il modello B3 proposto da Z. Bazant [4], che per l’FRP impiegando un modello micromeccanico proposto in [5]. BIBLIOGRAFIA [1] P. Wrigger, (2002), “Computational Contact Mechanics”, Springer. [2] C. Pellegrino, D. Tinazzi, C. Modena, (2008), “Experimental study on Bond Behavior between Concrete and FRP reinforcement”, J. Compos. for Constr.,vol 12(2), 180-189. [3] K. V. Subramaiam, C. Carloni, L. Nobile, (2007), “Width effect in the interface fracture during shear debonding of FRP sheets from concrete”, Eng. Frac. Mech., vol. 74, 578-594. [4] Z. Bazant and S. Baweja, Creep and shrinkage prediction model for analysis and design of concrete structures: Model B3, in Adam Neville Symposium: Creep and Shrinkage – Structural Design Effects, ACI SP-194, A. Al-Manaseer Ed., Am. Concrete Institute, Farmington Hills, Michigan, 1–83, 2000. [5] L. Ascione, V.P. Berardi, G. Mancusi, (2003), “Il Comportamento a lungo termine sotto carichi statici di travi in c.a. placcate con lamine di FRP”, XXXII Congresso AIAS, Salerno. [6] S. T. Smith, J. G. Teng, (2001), “Interfacial stress in plated beams”, Eng. Struc., vol. 23, 857-871

    Mechanical and durability behaviour of growing concrete structures

    Get PDF
    Purpose – This paper seeks to analyse 3D growing concrete structures taking into account the phenomenon of body accretion, necessary for the simulation of the construction sequence, and carbon dioxide attack. Design/methodology/approach – A typical 3D segmental bridge made of precast concrete is studied through a fully coupled thermo-hygro-mechanical F.E. model. The durability of the bridge is evaluated and carbonation effects are considered. Creep, relaxation and shrinkage effects are included according to the theory developed in the 1970s by Bažant for concretes and geomaterials; the fluid phases are considered as a unique mixture which interacts with a solid phase. The porous material is modelled using n Maxwell elements in parallel (Maxwell-chain model). Findings – First, calibration analyses are developed to check the VISCO3D model capabilities for predicting carbonation phenomena within concrete and the full 3D structure is modelled to further assess the durability of the bridge under severe conditions of CO2 attack. Originality/value – The adopted numerical model accounts for the strong coupling mechanisms of CO2 diffusion in the gas phase, moisture and heat transfer, CaCO3 formation and the availability of Ca(OH)2 in the pore solution due to its transport by water movement. Additionally, the phenomenon of a sequential construction is studied and numerically reproduced by a sequence of “births” for the 3D finite elements discretizing the bridge. The fully coupled model is here extended to 3D problems for accreting bodies (as segmental bridges) in order to gather the effects of multi-dimensional attacks of carbon dioxide for such structures
    • …
    corecore